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In Rodriguez and van Kampen's 1976 paper a method of extracting information 
from the Fokker-Planck equation without having to solve the equation is out- 
lined. The Fokker-Planck equation for a Dulling oscillator excited by white 
noise is expanded about the intensity ct of the forcing function. In Weinstein and 
Benaroya, the effect of the order of expansion is investigated by carrying the 
expansion to a higher order. The effect of varying the system parameters !s also 
investigated. All results are verified by comparison to Monte Carlo experiments. 
In this paper, the van Kampen expansion is modified and applied to the case 
of a Duffing oscillator excited by colored noise. The effect of the correlation time 
is investigated. Again the results are compared to those of Monte Carlo 
experiments. It is found that the expansion compares closely with those of the 
Monte Carlo experiments as the correlation time r c is varied from 0.001 to 
10sec. Examination of the results reveals that the colored noise can be 
categorized in one of four ways: (1) for r c < 60(0.01 sec) the noise can be con- 
sidered as white for all intents and purposes, (2) for rc = 6O(0.1 sec) the noise can 
be considered white for some purposes, (3) for rc=6o(l.0 sec) the correlated 
nature of the noise must be considered in an analysis, and (4) for 6O( 1.0 sec)< z~ 
the noise can be considered as deterministic. 

KEY WORDS: Fokker-Planck equation; white noise; colored noise; van 
Kampen expansion; Monte Carlo; Duffing oscillator. 

1. INTRODUCTION 

The Fokker-Planck equation has proven to be a useful tool in the analysis 
o f  s i m p l e  n o n l i n e a r  o s c i l l a t o r s  e x c i t e d  b y  s t o c h a s t i c  p r o c e s s e s .  As  a p a r t i a l  
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differential equation for the probability density function of the response, its 
solution completely defines the solution of the problem. It can be used to 
analyze both a single oscillator of the form 

mYc + y(Sc, x)~c + k(Yc, x ) x  = ~ ( t )  (1) 

or a system of multiple, linked oscillators of the form 

M g  + F(_~, _x)8 + K(8, _x)_x = _~(t) (2) 

In many cases, a physical system can be approximated by such a 
system of nonlinear oscillators. The systems so modeled can range from a 
Brownian particle to structures excited by von Kbxm~n vortex shedding. 
Such modeling can be useful for gaining insight into a problem and the 
way in which the system will behave as certain parameters are varied. 

Once one has decided on the system of oscillators to be used to repre- 
sent the physical system, the derivation of the Fokker-Planck equation is 
relatively straightforward, although tedious. The problem remains of how 
to solve it for the probability distribution of the response. In a very few 
cases, the Fokker-Planck equation can be solved analytically, but in most 
cases no analytical solution exists and one usually must resort to a numeri- 
cal solution. However, this can be computationally intensive and gives little 
insight into the larger problem. 

In their 1976 paper, Rodriguez and van Kampen t~ outline a method of 
dealing with the case of an oscillator excited by weak Gaussian white noise. 
The Fokker-Planck equation of the system is expanded about the intensity 
a of the driving function. This expansion is carried to (9(ctm). In this way 
the statistics of the fluctuations are obtained directly. This method shows 
promise as a way to use the Fokker-Planck equation to gain useful infor- 
mation about a wider variety of systems than was possible before. 

This is the second of a planned series of papers exploring the useful- 
ness of this method. In the previous paper ~2) the method was applied to the 
problem of a Duffing oscillator excited by Gaussian white noise. The 
inherent assumptions of the method were explained there in detail, the 
expansion was carried both to the same order as in the orginal paper and 
to (0(ct3/2), and results were presented and compared to Monte Carlo 
experiments. Parametric studies were also performed on the parameter of 
expansion as well as on the other important variable in the expansion: the 
coefficient of damping. 

In this paper, the expansion is applied to the case of a Duffing 
oscillator excited by exponentially correlated noise. A parametric study is 
performed on the correlation time r,. and the results are compared to those 



Duffing Oscillator Excited by Colored Noise 683 

of Monte Carlo experiments. The range of rc for which the correlated noise 
can be treated as white is identified as well as the range of  r c for which the 
correlated nature of the noise cannot  be ignored. 

2. EXPANSION OF THE FOKKER-PLANCK EQUATION FOR 
A DUFFING OSCILLATOR EXCITED BY CORRELATED NOISE 

In Gang  I~1 a method is outlined for deriving the Fokker -P lanck  equa- 
tion of a system driven by colored noise. The procedure outlined consists 
of defining a dummy variable y to represent the colored noise process, y is 
defined as a first-order, linear, differential filter of  the white noise process: 

c1.9(t) = cz y(t) + c3 W(t) (3) 

where ci are constants and W(t) is the Gaussian white noise process 
defined by 

(w( t ) )=0 
(4) 

(W( t )  W(t') ) = 20t6(/-- t ' )  

The system is now formulated as a system of first-order differential 
equations driven by y(t):  

) = C Z y + C 3  W (5) 
Cl Cl 

k = Fx(x, v, y) (6) 

b = r,,(x, v, y) (7) 

Several examples of colored noise filters exist in the literature. Billah 
and Shinozuka ~4~ use 

zcp(t)  = - -y ( t )+ W(t) (8) 

where zc is the correlation time. It can be seen that as zc--* O, y( t )~ W(t). 
For this derivation, it will be assumed that zc is not  vanishingly small, so 
that Eq. (8) can be written as 

p(t) = -lay(t)  + laW(t) (9) 

where/a = 1/r c. 
The Duffing oscillator excited by colored noise can now be written as 

5c(t) + yYc(t) + x(t) + x3(t) = y ( t )  (10) 

where y is the coefficient of damping. 
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By defining v(t)-Yc(t) ,  one can recast the system as three linked, 
ordinary differential equations in time in the form of Eqs. (5)-(7): 

:~(t)=v(t) (11) 

f)(t) = y(t) - yv(t) - x(t) - x3(t) (12) 

~(t) = - ~ y ( t )  + ~ w ( t )  (13) 

Define f ( x ,  v, y; t) to be the joint probability density function of 
x(t), v(t), and y(t)  at time t. The Fokker-Planck equation for f (x ,  v, y; t) 
can now be derived as 

O fc~t = - V a xO--~- f o v 0 t3 Oa_fff - 7 - - [ ( y - y v - x - x 3 ) f ] + l a 7  - (y f )+ t t2a  f (14) 

Equation (14) is the governing equation for the time evolution of the 
transition probability density function f ( x ,  v, y; t). From this point the 
derivation of the previous paper (21 will be followed. 

As was shown in the previous paper, the response of the oscillator can 
be separated into a deterministic component due to the initial conditions 
and a random component of magnitude (_9(x/~). However, by assuming 
that the oscillator is initially at rest, the deterministic component can be 
shown to be equal to zero. Therefore the following substitutions are made 
into Eq. (14): 

x=v/~ (15) 
v = x / ~  q (16) 

y=x / /~  p (17) 

f ( x / ~  ~, x /~ ,, w/~ p; t )=  ct- 3/2H(~, rl, p; t) (18) 

The factor ~-3/2 will be omitted from the definition of H((, ~/, p; t). If 
carried through the derivations, it would be divided out at a later stage of 
the derivation. 

It must be explained why, as is implied in Eq. (17), y is of the order 
of magnitude 0d/2. This is because y is of the same order of magnitude as 
the white noise forcing function F. But it can be seen from the definition 
of F, Eqs. (4), that ~ = 2a2F . Therefore F and consequently y are of ( . -0((XI/2) .  

The relationships between the partial derivatives of f and H are 
obtained as 

Of OH 0~1/2 - -  = 
Ox O~ (19) 
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~,12 of= o/7 
dv &/ 

of OH I / 2  - -  

Oy Op 

of OH 
Ot at 

(20) 

(21) 

(22) 

This yields the following transformed Fokker-Planck equation: 

0 0 H 0 0 02 
05 17= --r/~-~ - - ~  [ (  p -- 7 q -  ~ -- ~x#3) H]  + I t ~pp ( P / 7 ) + ,  u2 --Op 2 H (23) 

By manipfilating the left-hand side of Eq. (23), one obtains 

o n .  0/7 _ o n  = 0 / 7 _ •  

0 #2 02 
+ U ~p ( p/7) + -~p2 H (24) 

If one substitutes the definitions of (, q, and p into Eqs. (11 )-(13), one 
can use the resultant equations to separate Eq. (24) into the following three 
equations: 

~/7 = q/-/ (25) 

~/-/= { 2 p -  ~,r/- ~ -  cr } H (26) 

~6H = - I~pH- 1~2Hp (27) 

Using Eqs. (27), (25), and (26), one can find the time derivatives of the 
higher-order moments of ~, q, and p. As an example, the time derivative of 
(p2 )  will derive. To derive (d/dt)(p2),  one multiplies Eq. (27) by 2p, 
notes that 2p,6 = (d/dt)(p2), and gets 

p2H = - p p 2 H - p 2 p H p  (28) 

Integrating this over the range of all three arguments of H and noting the 
definition of expectation, one finds 

e p2 III2 
dt ( p 2 )  = - 2 p (  ) -2 /~  2 p/7p do d~ dq (29) 

822/77/3-4-12 
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The second term on the right-hand side can be expanded as follows: 

= - 1 +  [pH co = - 1  (30) 
- - 0 9  

- - C O  

This last step is possible because the existence of <p> guarantees that 
pH -o 0 as p -o _ oo. Equa t ion  (29) becomes 

d 
dt <pZ> = - 2 / 2 < p Z >  +2/22 (31) 

of the other second-order moments are similarly The time derivatives 
obtained: 

d 
<~:> = 2<r = -2<r  

dt 

d 
dt  <r/-' > = 2 < t/f/> = - 2<Cr/> - 212<C 2 > + 4<r/p > - 2c~< C3r/> 

d 
<~r/> = (~r/> + <{r~ > = - <~2 > - y<Cr/> - <r/= > + 2<~p ) - -  0 ~ < ~  4 

d-7 

d 
dt < p 2 )  = _2/2< p=)  _ 2/2= 

d 
at <~P> = - /2<r  <~P> 

a 
dt  <r/p } = - <{p } - Y(nP } + 2< p2 } _ ~ ( ~ 3 p  > 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

3. RESULTS A N D  F IGURES 

Figures 1, 3, and 5 show the results of the expansion for ~=0 .1 ,  
) ,= 1.0, and different values of the correlation time re: re=0.001,  0.01, 0.1, 
1.0, 10.0. Figures 2, 4, and 6 show the results of Monte Carlo experiments 
for similar cases. 

As in the previous paper, there is very good agreement between the 
two methods, with similar differences as well. The analytical methods con- 
sistently give results slightly greater in magnitude than do the Monte Carlo 
experiments. This phenomenon was seen in the previous paper. The 
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Fig. 1. (if2) versus time for different values of t~, ~,= 1.0, at=0.1, calculated analytically 
to ~(~/2). 

ana ly t ica l  results  are  also cons is ten t ly  smoo the r ,  showing  n o n e  of  the 
smal l - t ime  scale f luc tua t ions  inhe ren t  in the M o n t e  C a r l o  technique .  

It  can  be seen in all the  curves  tha t  the traces represen t ing  tc = 0.001 

and  tc  = 0.01 are  a lmos t  identical .  In  some  cases, mos t  no t ab ly  Figs. 1 and  
3, the  two  traces are  a l m o s t  indis t inguishable .  The  difference be tween  the 

t races  r ep resen t ing  tc  = 0.001 and  tc = 0.01 are  sl ightly m o r e  p r o n o u n c e d  in 

the M o n t e  C a r l o  results. H o w e v e r ,  the difference be tween  the t o = 0 . 0 0 1  

and  t c = 0.01 t races of  the M o n t e  C a r l o  results  is only  of  the o rde r  of  the 
smal l - t ime-sca le  f luc tua t ions  inhe ren t  in the M o n t e  C a r l o  technique.  These  

figures indica te  that  for tc  of  0(0 .01)  o r  less, the noise  can  be a s sumed  to 
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Fig. 2. ((2) versus time for different values of r e, "~ = 1.0, cc = 0.1, calculated by Monte Carlo 
simulation. 
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to ~(~3/2). 

be uncorrelated, or white. The traces representing the response for r e =  0.1 
differ noticeably from those representing the results for T,. < 0.1. However, 
even for rc = 0.1, the results are still quite close to those for z,. < 0.1 and the 
white noise approximat ion may still be useful for some uses. One would 
expect the effects of the correlated nature  of the noise to become significant 
at about  z,. = 0.1: at ~,.= 0.1, the correlation time begins to become com- 
parable to the natural  period of the oscillator, which is about  1 sec. The 
correlated nature of the noise appears as an effect of time scale zc on the 
time history of the correlated noise. If the time scale of the correlation, is 
much smaller than the natural  period of the oscillator, then the oscillator 
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Fig. 4. (01) versus time for different values of ~o )' = 1.0, a = 0.1, calculated by Monte Carlo 
simulation. 
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Fig. 5. ( t /2)  versus time for different values of  L., ) '=  1.0, ~x=0.1, calculated analytically 
to ~(~3/2). 

cannot respond to this effect. However, as r,. approaches the natural period 
of the oscillator, the oscillator can be, and is, affected. 

It can likewise be seen that as the correlation time of the noise 
becomes much greater than the natural period of the oscillator, the 
magnitude of the random response approaches zero. This is because when 
the correlation time is much larger than the natural period of the oscillator, 
the oscillator responds to the noise as if it were deterministic. Hence the 
figures show little random response for r,. = 1.0 sec and almost none at all 
for r,. = 10.0 sec. 
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Fig. 6. O/2)  versus time for different values of  r c, ) ,= 1.0, a = 0.1, calculated by Monte  Carlo 
simulation. 
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4. CONCLUSIONS 

The overwhelming similarity between the results given by the two 
methods implies that this adaptation of the van Kampen expansion is an 
accurate tool for predicting the statistics of the response of an oscillator 
excited by colored noise. However, it was also seen that, depending on the 
magnitude of the correlation time as compared to the natural period of the 
oscillator, simplifying assumptions can be made that obviate the need for 
this adaptation. 
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